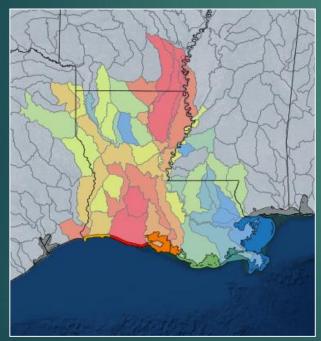
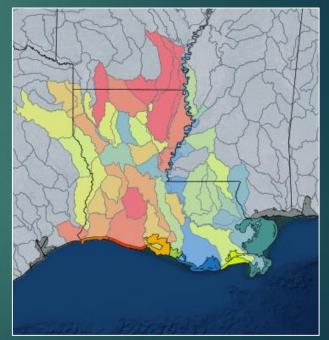
Impact of unconventional energy development using hydraulic fracturing on water resources availability in LA

Hanz Unruh, University of Louisiana at Lafayette

Emad Habib, University of Louisiana at Lafayette


David Borrok, Missouri University of Science and Technology

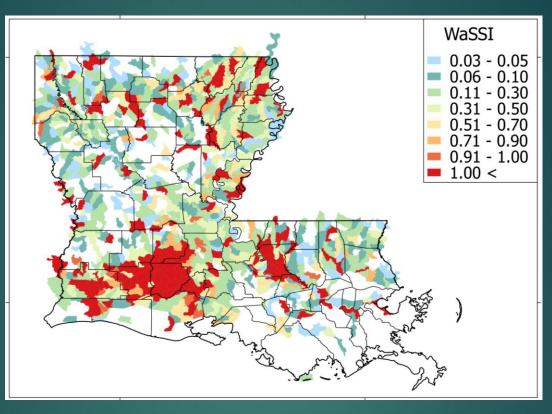
We think Louisiana has a lot of water. But...


- Water withdrawals (2005) were between 10 to 20 thousand of mgal/day. Just below Texas and California (20 to 46 thousand mgal/day).
- 52% Louisiana water withdrawals come from the thermoelectric sector.
- □ 82% of the withdrawals come from surface water.

High withdrawals means low water availability?

Not necessary. A water stress metric is required to assess the availability.

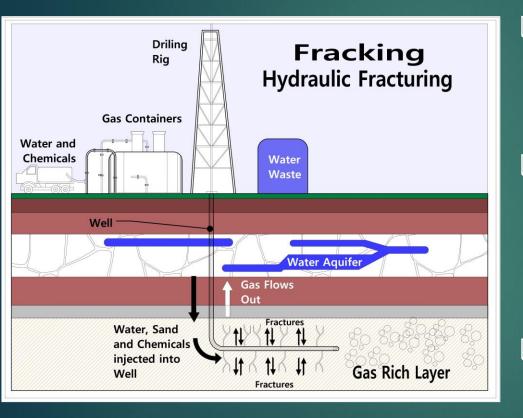
Withdrawals (Agriculture).


Stress ratio (Agriculture).

Images extracted from Hydroviz.org

Background How to estimate water stress? A breakdown of the *Water Supply Stress Index (WaSSI)* Total water withdrawals WaSSI =Total water supply Surface WaSSI GroundwaterWaSSI Surface waterwithdrawals Groundwater water withdrawals $\frac{1}{(1 - ENV)(Surface water supply)}$ Groundwater supply Agriculture Agriculture Livestock Industrial Industrial Rural domestic Power generation Power generation Public supply Public supply

Louisiana water sectors obtained from Sargent, 2011


Louisiana Groundwater stress (2010)

White areas indicates WaSSI < 0.03

- For water stress matrices Mining has not been accounted in Louisiana.
- For unconventional fossil fuels extraction a hydraulic fracturing is required.

Unconventional energy development

Hydraulic fracturing (HF) also known as fracking.

❑ The injected fluid is composed by water (98%), proppant and chemicals (2%).

Vertical or Horizontal wells can be hydraulic fractured.

Image adapted from epa.gov

Unconventional fossil fuels extraction is accounted under *Mining* category water use

Prospective shale play

Most productive shale gas play

Image adapted from Welsh, DNR, 2017

Recent tight oil shale play

Concerns about fracking

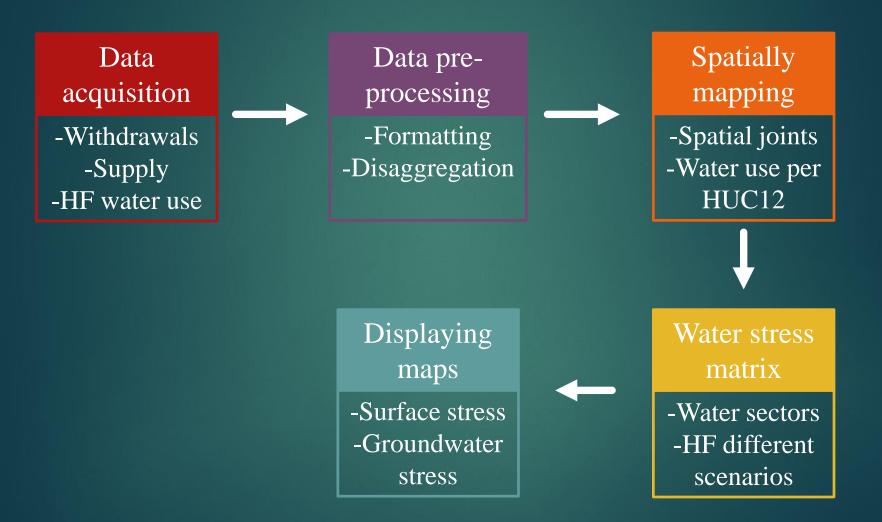
Requires huge amount of water. From 3.31 up to 8.83
 Million of gallons (or more) per job.

- Groundwater pollution.
- □ Flow back and produced water treatment.
- □ Air pollution. (Methane leakage and benzene).
- □ Depletion of water resources.
- □ Fracking induced earthquakes.

Why digging into HF is important?

Northwest Louisiana Aquifers

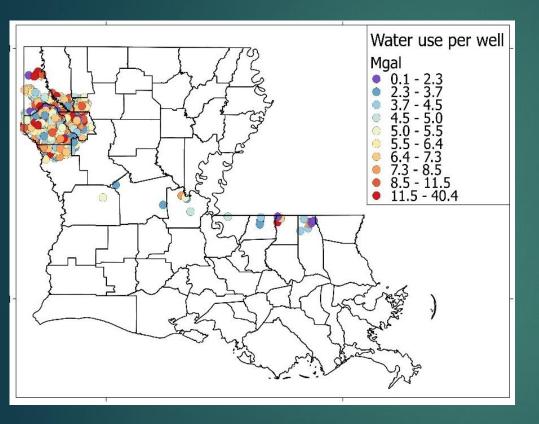
- □ No study has account the impact of HF in a small spatial frame.
- □ South Caddo Parish groundwater emergency in 2011.
- Most of Louisiana power plants use Natural gas as a fuel. Image adapted from USGS/LA Water Science Center



Research Questions

Based on a small spatial scale and a short time period, what is the impact of hydraulic fracturing activities on Louisiana's current surface and groundwater resources?

How different scenarios of future projected hydraulic fracturing activities can impact the sustainability of Louisiana water resources?

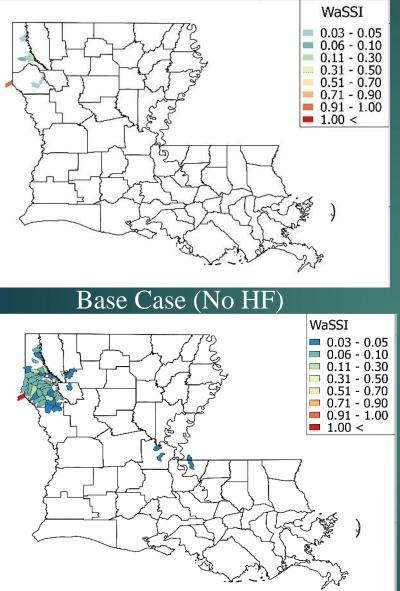

Methods scheme

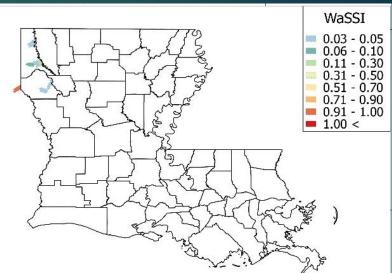
Datasets

Source	Variable	Spatial Scale	Temporal Scale	
NHDPlus	Surface water supply	Stream	Annual average	
		lines	(1971-2000)	
USGS	Groundwater recharge	1 x 1 km2	Annual average	
0305	Oroundwater reenarge		(1951-1980)	
Fracfocus.org	Oil and gas wells water	Location	One-time event	
	use	Location	from 2011-2016	
LICCO	Surface water	Dovial	Annual average	
USGS	withdrawals	Parish	(2010)	
USGS	Groundwater	Donich	Annual average	
	withdrawals	Parish	(2010)	

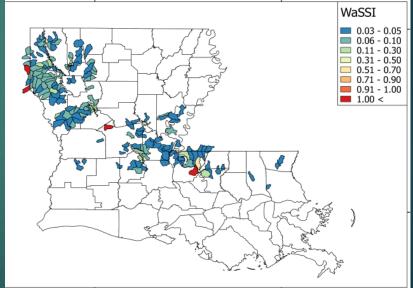
Drilled wells

Information available regarding to number of wells


Description	Number of
	wells
Total wells	2,865
spatially located	
Total wells with	1,364
water use for HF	
reported	
Severe year 2011	567

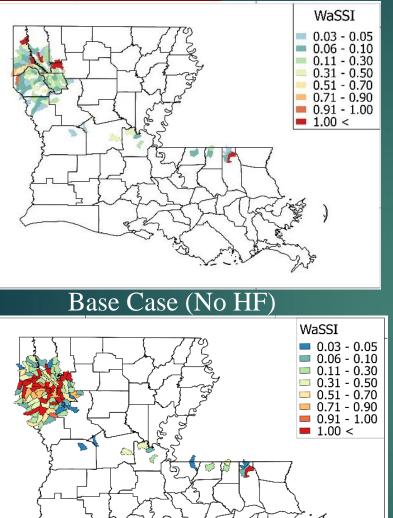

Figure: Wells with HF water use reported on year 2011

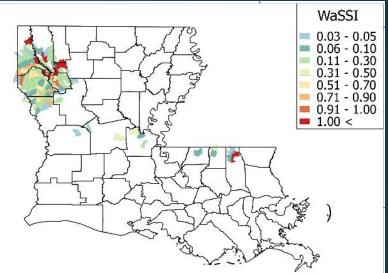
Testing scenarios


Water stress scenario	Haynesville (# wells)	Tuscaloosa (# wells)	Haynesville (# HUCs)	Tuscaloosa (# HUCs)	
Base case (No fracking)	0	0	94	19	
HF water use of 2011	544	23	94	19	
HF water use of all existing wells	2,832	33	94	19	
HF water use required for shale play total extraction	10,000	6,312	167	330	

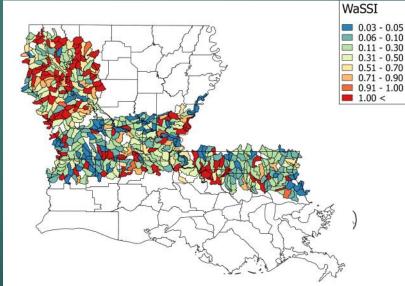
Surface WaSSI

HF 2011




Existing wells

Total extraction


(White color in the figure indicates WaSSI values below 0.03)

Groundwater WaSSI

HF 2011

Existing wells

Total extraction

(White color in the figure indicates WaSSI values below 0.03)

Haynesville shale play

Stressed HUC units count

C ++++++++++++++++++++++++++++++++++++	Number of HUC-12 Units (%) per scenario and source							
Stress on	Base case		2011 year		Existing wells		Full extraction	
System	SW	GW	SW	GW	SW	GW	SW	GW
High > 1	1(1)	5(5)	1(1)	7(7)	1(1)	23(24)	2(0)	53(32)
Medium	0(0)	7(7)	0(0)	13(14)	0(0)	16(17)	0(0)	35(21)
0.50-1.00	0(0)	/(/)	0(0)	13(14)	0(0)	10(17)	0(0)	33(21)
Low < 0.50	93(99)	82(88)	93(99)	74(79)	93(99)	55(59)	165(100)	79(47)

Tuscaloosa shale play

Stressed HUC units count

Number of HUC-12 Units (%) per scenario and source

Stress on	Base	case	2011	year	Existing	g wells	Full ext	raction
System	SW	GW	SW	GW	SW	GW	SW	GW
High > 1	0(0)	1(5)	0(0)	1(5)	0(0)	1(5)	2(0)	43(13)
Medium	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	1(0)	27(8)
0.50-1.00	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	1(0)	27(0)
Low < 0.50	19(100)	18(95)	19(100)	18(95)	19(100)	18(95)	327(100)	260(79)

Summary results

Results

Water stress scenario	Haynesville: # HUCs migrating to high stress category (%)	Tuscaloosa: #HUCs migrating to high stress category(%)		
HF water use of 2011	8 (8%)	0 (0%)		
HF water use of all existing wells	27 (29%)	0(0%)		
HF water use considering all the wells required for shale plays total extraction	65(45%)	18 (7%)		

Conclusions

Conclusions

□ Surface water in Louisiana shale play areas seems to be sufficient to cover water demands for HF.

- ❑ Groundwater resources are sensitive to HF activities. especially for the Haynesville shale play, HF water can impose significant stress on the groundwater resources.
- □ The water source selection used for unconventional extraction activities is critical for LA water stress sensitive areas.
- Relevance of reporting HF water use is significant for proper water management at small scale regions.

Future work

□ Similar work can be conducted in different states with more hydraulic fracturing activity.

- Recycled flow back and produced water opportunities to help alleviate the impact in high stressed areas.
- Surface water available may be enough but not cost-feasible.
 A cost analysis can be performed to assess the feasibility of using alternative resources.
- □ Future studies may consider the quality aspects of hydraulic fracturing.

Questions

Acknowledgments to the Ground Water Protection Council and Interstate Oil and Gas Compact Commission for providing data on fracking water use and to the awarded NSF grant for funding this research

Thank You for Attending Today's Presentation Contact Info: <u>hgu2853@louisiana.edu</u>