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INTRODUCTION 

o Status of on-line optimization 

o Theoretical evaluation of distribution functions 
used in NLP’s 

o Numerical results support the theoretical 
evaluation 

o An optimal procedure for on-line optimization 

o Application to a Monsanto contact process 

o Interactive Windows program incorporating these 
methods 

Mineral Processing Research Institute
 web site

 www.mpri.lsu.edu 

http:www.mpri.lsu.edu


 

 

  
  

 

 

On-Line Optimization 
Automatically adjust operating conditions 
with the plant’s distributed control system 

Maintains operations at optimal set points 

Requires the solution of three NLP’s
gross error detection and data reconciliation
parameter estimation
economic optimization 

BENEFITS 

Improves plant profit by 3-5% 

Waste generation and energy use are 
reduced 

Increased understanding of plant 
operations 
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Some Companies Using On-Line
Optimization 

United States 
Texaco 

Europe 
OMV Deutschland 

Amoco Dow Benelux 
Conoco Shell 
Lyondel 
Sunoco 

OEMV 
Penex 

Phillips 
Marathon 
Dow 

Borealis AB 
DSM-Hydrocarbons 

Chevron 
Pyrotec/KTI 
NOVA Chemicals (Canada)
British Petroleum 

Applications
mainly crude units in refineries and
ethylene plants 



 

 

 
 

 

  

  

Companies Providing On-Line Optimization 

Aspen Technology - Aspen Plus On-Line
- DMC Corporation 
- Setpoint
- Hyprotech Ltd. 

Simulation Science - ROM 
- Shell - Romeo 

Profimatics - On-Opt 
- Honeywell 

Litwin Process Automation - FACS 

DOT Products, Inc. - NOVA 



 

   

  
  

   
   

  

 

Distributed Control System 

Runs control algorithm three times a second 

Tags - contain about 20 values for each 
measurement, e.g. set point, limits, alarm 

Refinery and large chemical plants have 5,000 -
10,000 tags 

Data Historian 

Stores instantaneous values of measurements for 
each tag every five seconds or as specified. 

Includes a relational data base for laboratory and 
other measurements not fromthe DCS 

Values are stored for one year, and require hundreds 
of megabites 

Information made available over a LAN in various 
forms, e.g. averages, Excel files. 



Plant Problem Size 
Contact Alkylation Ethylene 

Units 14 76 -

Streams 35 110 ~4,000 

Constraints 

Equality 761 1579 ~400,000 

Inequality 28 50 ~10,000 

Variables 

Measured 43 125 ~300 

Unmeasured 732 1509 ~10,000 

Parameters 11 64 ~100 



   

  

  

  

Status of Industrial Practice for On-Line Optimization 

Steady state detection by time series screening 

Gross error detection by time series screening 

Data reconciliation by least squares 

Parameter estimation by least squares 

Economic optimization by standard methods 



 

   

   

  

    

 
 

Key Elements 

Gross Error Detection 

Data Reconciliation 

Parameter Estimation 

Economic Model
 (Profit Function)

 Plant Model
 (Process Simulation) 

Optimization Algorithm 



 

 

 

  

 

 

DATA   RECONCILIATION 

Adjust process data to satisfy material and
energy balances. 

Measurement error - e 

e = y - x 

y = measured process variables 
x = true values of the measured variables 

x~  = y + a 

a - measurement adjustment 



   

  

     
 

    

 
       

     

DATA RECONCILIATION 

measurements having only random errors - least squares 

MiMinniimmiizzee:: eeTTEE -1-1ee = (= ( yy -- xx))TTEE -1-1((yy -- xx)) 
xx 

Subject to: f(x) = 0 

E  = variance matrix = {F2
ij}. 

F i =standard deviation of ei. 

f(x) - process model
 - l inear or nonlinear 



 

  

  

   
 

 

 

DATA   RECONCILIATION 

Linear Constraint Equations - material balances only 

f(x) = Ax = 0 

~analytical solution - x = y - EAT(AEAT)-1Ay 

Nonlinear Constraint Equations 

f(x) includes material and energy balances, 
chemical reaction rate equations, thermodynamic
relations 

nonlinear programming problem 

GAMS and a solver, e.g. MINOS 



 

   
  

Types of Gross Errors 

Source:  S. Narasimhan and C.Jordache, Data Reconciliation and Gross 
Error Detection, Gulf Publishing Company, Houston, TX (2000) 



  

  

 

   

Gross Error Detection 
Methods 
Statistical testing 

o  many methods 

o can include data reconciliation 

Others

 o Principal Component Analysis

 o Ad Hoc Procedures - Time series 
screening 



   

 
  

 
 

         

    

    

Combined Gross Error Detection and Data Reconciliation 

Measurement Test Method - least squares 

Minimize: (y - x)TΣ-1(y - x) = eTΣ-1e 
x, z 

Subject to: f(x, z, θ) = 0 

xL # x # xU 

zL # z # zU 

Test statistic: 
if *ei*/σi > C measurement contains a gross error 

Least squares is basedon only randomerrors being present 
Gross errors cause numerical difficulties 
Need methods that are not sensitive to gross errors 



 

 

 
    

     
     

    

Methods Insensitive to Gross Errors 

Tjao-Biegler’s Contaminated Gaussian
Distribution 

P(yi * xi) = (1-η)P(yi * xi, R) + η P(yi * xi, G) 

P(yi * xi, R) = probability distribution function for the random error 
P(yi * xi, G) = probability distribution function for the gross error. 
Gross error occurwith probability η 

Gross Error Distribution Function 

&&((yy&&xx))22 

11 22bb 22σσ22PP((yy**xx,, GG)) '' ee 
22ππbbσσ 



  
 

   

 
      

   

 

   
   

   

Tjao-Biegler Method 
Maximizing this distribution function of measurement 
errors or minimizing the negative logarithm subject to the 
constraints in plant model, i.e., 

&&((yyii&&xxii))
22 &&((yyii&&xxii))

22 
MiMininimimizzee:: 22 2222FFii 00 22bb 22FF iixx lnln (1(1 && 00)) ee %% ee && lnln 22BFBF ii&&33 

bbii 

Subject to: f(x) = 0 plant model 
xL # x # xU bounds on the process

variables 

A NLP, and values are needed for 0 and b 

Test for Gross Errors 

If 0P(yi*xi, G) $ (1-0)P(yi*xi, R), gross error 
probability of a probability of a 
gross error random error 

22bb 22 
lnln bb(1(1&&00))yyii&&xxii

'' >>**,, ii ** // // 00bb 22&&11000000 FF 000ii 
000 



   
     

      

 

 

   
     

Robust Function Methods 

MiMinniimimizzee:: --33 [[ DD(y(yii, x, xii) ]) ] 
xx ii 

SuSubbjjeecctt tt oo:: ff((xx) =) = 00 
xL # x # xU 

Lorentzian distribution 

11DD((,,ii)) '' 
11 2211 %% ,,ii22 

FFaaiirr funcfunc titioonn **,,ii ** **,,ii ** 11%%DD((,,ii,,cc)) '' cc 22 && lologg
cc cc 

c is a tuning parameter 
Test statistic 

,i = (yi - xi )/Fi 



 

 
     

 
 

 

 
   

 

  

 
     

 
   

Parameter Estimation 
Error-in-Variables M ethod 

Least squares 

M iM inniim im izzee: (: (yy  -- xx))TTEE -1-1((yy  -- xx) =) = eeTTEE -1-1ee 
22 

Subject to : f(x , 2 ) = 0 
2  -pl ant param eters 

Sim ultaneous data reconciliation and param eter 
estim ation 

M iM inniim im izzee: (: (yy  -- xx))TTEE -1-1((yy  -- xx) =) = eeTTEE -1-1ee
 xx ,, 22 

Subject to : f(x , 2 ) = 0 

another nonlinear programm ing problem 



 
  

 
 

 
 

 

Three Similar Optimization Problems 

Optimize: Objective function 
Subject to: Constraints are the plant

model 

Objective function 

data reconciliation - distribution function 
parameter estimation - least squares
economic optimization - profit function 

Constraint equations 

material and energy balances 
chemical reaction rate equations
thermodynamic equilibrium relations 
capacities of process units
demand for product
availability of raw materials 



Theoretical Evaluation of Algorithms for Data Reconciliation 

Determine sensitivity of distribution functions to gross errors 

Objective function is the product or sum of distribution functions 
for individual measurement errors 

P = ( p(,) % 3 ln p(,) % 3D(,) 



Three important concepts in the theoretical 
evaluation of the robustness and precisionof 
an estimator from a distribution function 

Influence Function 

Robustness of an estimator is unbiasedness 
(insensitivity) to the presence of gross 
errors in measurements. The sensitivity of 
an estimator to the presence of gross errors 
can be measured by the influence function 
of the distribution function. For M-estimate, 
the influence function is defined as a 
function that is proportional to the derivative 
of a distribution function with respect to the 
measured variable, (MD/Mx) 



Relative Efficiency 

The precision of an estimator from a distribution is measured by 
the relative efficiency of the distribution.  The estimator is precise 
if the variation (dispersion) of its distribution function is small 

Breakdown Point 

The break-down point can be thought of as giving the limiting 
fraction of gross errors that can be in a sample of data and a 
valid estimation of the estimator is still obtained using this data.  
For repeated samples, the break-down point is the fraction of 
gross errors in the data that can be tolerated and the estimator 
gives a meaningful value. 



     

      

 

Influence Function 
proportional to the derivative of the distribution function, IF % Mρ/Mx 

represents the sensitivity of reconcileddata to the presence ofgross errors 

Normal Distribution 
Mρi yi&xi εiIFMT % ' ' 
Mxi σ2 

i σi 

Contaminated Gaussian Distribution 
εε22 11&& ii 11&&εεii ηηbb22(1(1&&ηη))ee 22 

%% 
bb33 

IFIF%% ' '' '  
MMρρii σσii 

εε22MMxxii && 11ii 11&& ηηbb22(1(1&&ηη))ee 22 
bb

%%

LorentzianDistribution 
MMρρii εεiiIFIFLLoorerennttziziaann %% ' &' &  

22MMεεii 11εε2211%% ii22

Fair Function 

MρiIFFair % 
Mεi 

' c 2 

1 
1 c 1

' 
c 
& 

*εi* 1 1
%1% *εi* cc 
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Fair function 

Contaminated distribution 

Lorentzian distribution 

Normal distribution 

Comparison of Influence Functions 

0 2 4 6 8 10 12 14 
Error , 

Effect of Gross Errors on Reconciled Data - Least to Most 

Lorentzian < Contaminated Gaussian  < Fair < Normal 
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Numerical Evaluation of Algorithms 

Simulated plant data is constructed by 

y = x + e + a* 

y - simulated measurement vector for measured variables 

x - true values (plant design data) for measured variables 

e - random errors added to the true values 

a - magnitude of a gross error added to one of measured 
variables 

* - a vector with one in one element corresponding to the 
measured variable with gross error and zero in other elements 



Criteria for Numerical Evaluation 

Gross error detection rate - ratio of number of gross 
errors that are correctly detected to the total number of 
gross errors in measurements 

Number of type I errors - If a measurements does not 
contain a gross error and the test statistic 
identifies the measurement as having a gross 
error, it is called a type I error 

Random and gross error reduction - the ratio of the 
remaining error in the reconciled data to the 
error in the measurement 



Comparison of Gross Error Detection Rates 
390 Runs for Each Algorithm 
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Comparison of Numbers of Type I Errors 

390 Runs for Each Algorithm 
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Comparison of Relative Gross Error Reductions 
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Results of Theoretical and Numerical Evaluations 

Tjoa-Biegler’s method has the best performance 
for measurements containing random errors
and moderate gross errors (3F-30F) 

Robust method using Lorentzian distribution is
more effective for measurements with very 
large gross errors (larger than 30F) 

Measurement test method gives a more accurate
estimation for measurements containing only 
random errors.  It gives significantly biased 
estimation when measurements contain gross 
errors larger than 10F 
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EcEconoonomimicc OO ppttiimimizzaatitionon 

Value Added Profit Function 

sF64F64 + sFS8FS8 + sFS14FS14 - cF50F50 - cFS1FS1 - cF65F65 

On-Line Optimization Results 

Profit 

Date 
Current
($/day) 

O

ptimal 
($/day) Improvement 

6-10-97 37,290 38,146 2.3% 
$313,000/yr 

6-12-97 36,988 38,111 3.1%
 $ 410,000/yr 



 
  

Plant model 

Combined gross 
error detection and 
data reconciliation 

Plant 
economic 
optimization 

Simultaneous data 
reconciliation and 
parameter estimation 

Optimal Plant data 
setpointsfrom DCS 
to DCS 

Optimization 
algorithm 



   
  

  
  
 

  
 

 
  

   
 

     
  

  

Interactive On-Line Optimization Program 

1. Conduct  combined gross error detection and data 
reconciliation to detect and rectify gross errors in
plant data sampled from distributed control system 
using the Tjoa-Biegler's method (the contaminated
Gaussian distribution) or robust method (Lorentzian
distribution). 

This step generates a set of measurements containing 
onlyrandom errors for parameter estimation. 

2. Use this set of measurements for simultaneous 
parameter estimation and data reconciliation using
the least squares method. 

This step provides the updated parameters in the
plantmodel for economic optimization. 

3. Generate optimal set points for the distributed control
system from the economic optimization using the
updated plant and economic models. 



 

 
   

       

 
  

 
 

Interactive On-Line Optimization Program 

Process and economic models are entered as 
equations in a form similar to Fortran 

The program writes and runs three GAMS 
programs. 

Results are presented in a summary form, on a
process flowsheet and in the full GAMS output 

The program and users manual (120 pages) can
be downloaded from the LSU Minerals 
Processing Research Institute web site 

URLhttp://www.mpri.lsu.edu 

http:URLhttp://www.mpri.lsu.edu






 

Plant Steady? 
No 

Parameter Estimation 

Economic Optimization 

Plant Steady? 

Optimal Setpoints 

Selected plant 
measurements 

No 

Selected plant 
measurements & 
controller limits 

Plant Model: 
Measurements 
Equality constraints 

Plant Model: 
Equality constraints 

Validated measurements 

Updated parameters 

Plant model 
Economic model 
Controller limits 

Data Validation 

Successful solution 
No 

Successful solution 
No 

Distributed Control System 



 

Some Other Considerations 
Redundancy 

Observeability 

Variance estimation 

Closing the loop 

Dynamic data reconciliation
 and parameterestimation 



   
 

 
    

Summary 

Most difficult part of on-line optimization is developing and
validating the process and economic models. 

Most valuable information obtained from on-line 
optimization is a more thorough understanding of the 
process 
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