Neutron scattering presentation series

(3) Data analysis and modeling

Xin Li

Department of Chemistry

Louisiana State University

June 1st, 2015

Types of Data Analysis

Thiyagarajan et al. JAC 2000

Rathegeber et al. JCP 2000

Blum et al. PNAS 2009

Standard Plots

Advantage:

- Convenient
- Model free
- Usable for complicated systems

Disadvantage:

- Qualitative
- Limited Q range
- Single length scale
- No interaction

- 1. P(Q) and S(Q)
- 2. Polydisperse system
- 3. Non-spherical system
- 4. Scattering contrast
- 5. Derive new scattering functions

Systems: polymers, colloids, microemulsions, superalloys...

P(Q) and S(Q)

I(Q) = nP(Q)S(Q)

n: number density

P(Q): form factor – single molecule structural information

S(Q): structure factor – intermolecular relative position

Only valid for **monodisperse spherical** particles in solution.

Chapter 16, J. Pedersen

Solving S(Q)

 $h \downarrow 12 = c \downarrow 12 + c \downarrow 13 * h \downarrow 23$

Ornstein-Zernike (OZ) Equation

h(r) = c(r) + h(r) * c(r)

h(*r*): total correlation function *c*(*r*): direct correlation function

Closure equation

F[h(r),c(r),V(r),n]=0

Percus-Yevick, MSA, RMSA, HNC, Rogers-Young, Zerah-Hansen...

Solving S(Q) (cont'd)

Chen et al. Macromolecules, 2007

Example 1 – Charge Stabilized Protein

THE JOURNAL OF CHEMICAL PHYSICS 123, 054708 (2005)

Diffusion and microstructural properties of solutions of charged nanosized proteins: Experiment versus theory

J. Gapinski,^{a)} A. Wilk, and A. Patkowski Institute of Physics, A. Mickiewicz University, 61-614 Poznan, Poland

W. Häußler Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), Technische Universität München, D-85748 Garching, Germany

A. J. Banchio Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

R. Pecora Chemistry Department, Stanford University, Stanford, California 94305-5080

G. Nägele

Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany (Received 15 December 2004; accepted 15 June 2005; published online 11 August 2005)

Apoferritin

 $D(Q)=D\downarrow 0 H(Q)/S(Q)$

Example 2 – Core Shell Structure

Macromolecules 2000, 33, 542-550

Contrast Variation Small-Angle Neutron Scattering Study of the Structure of Block Copolymer Micelles in a Slightly Selective Solvent at Semidilute Concentrations

Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risø National Laboratory, Roskilde, DK-4000, Denmark

Ian W. Hamley

School of Chemistry, University of Leeds, Leeds, West Yorkshire LS2 9JT, U.K.

Chang Yeol Ryu and Timothy P. Lodge

Department of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455

Received May 12, 1999; Revised Manuscript Received October 20, 1999

Polystyrene-polyisoprene (PS-PI) diblock copolymer in di-n-butyl phthalate (DBP) $F_{\rm mic}(q) = N\beta_{\rm core}^{2}F_{\rm core}(q) + N\beta_{\rm chain}^{2}F_{\rm chain}(q) + 2N\beta_{\rm core}\beta_{\rm chain}S_{\rm core-chain}(q) + N(N-1)\beta_{\rm chain}^{2}S_{\rm chain-chain}(q)$ (1)

$$F_{\text{chain}}(q) = \frac{2[\exp(-x) - 1 + x]}{x^2}$$
(2)

where $x = q^2 R_g^2$.

Example 3 – Star-like Polymer

(Daoud and Cotton J. Phys. 1982)

Polydisperse System

Monodisperse:

I(Q) = nP(Q)S(Q)

 $I(Q) = \int 0 \uparrow \infty m(R) P(Q,R) dR$

 $\int 0 \uparrow \infty m(R) dR = 1$

Polydisperse dilute:

with

Polydisperse interacting (binary mixture):

$$\begin{split} I(Q) = \left[\blacksquare \sqrt{n \downarrow 1} \ P(Q, R \downarrow 1) \ \& \sqrt{n \downarrow 2} \ P(Q, R \downarrow 2) \ \right] \left[\blacksquare S \downarrow 11 \ (Q, R \downarrow 1) \ \& S \downarrow 12 \ (Q, R \downarrow 1, R \downarrow 2) \ \& S \downarrow 22 \ (Q, R \downarrow 1) \ \right] \left[\blacksquare S \downarrow 11 \ (Q, R \downarrow 1) \ \& S \downarrow 12 \ (Q, R \downarrow 1) \ P(Q, R \downarrow 1) \ A \downarrow 2 \ A$$

 $S_{12}(Q,R_1,R_2)=S_{12}(Q,R_1,R_2)$ is the cross correlation between species 1 and 2 as the partial structure factor.

Example 4 – Binary Mixture

PHYSICAL REVIEW E 73, 031407 (2006)

Scattering for mixtures of hard spheres: Comparison of total scattering intensities with model

B. J. Anderson,¹ V. Gopalakrishnan,¹ S. Ramakrishnan,² and C. F. Zukoski^{1,*}

¹Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

²Department of Chemical and Biomedical Engineering, Florida A&M–Florida State University,

Tallahassee, Florida 32310, USA

(Received 18 October 2005; published 23 March 2006)

 S_1

.

$$S_{11}(q) = \frac{[1 - n_2C_{22}(q)]}{[1 - n_1C_{11}(q) - n_2C_{22}(q) + n_1n_2C_{11}(q)C_{22}(q) - n_1n_2C_{12}^2(q)]},$$

$$S_{22}(q) = \frac{[1 - n_1C_{11}(q)]}{[1 - n_1C_{11}(q) - n_2C_{22}(q) + n_1n_2C_{11}(q)C_{22}(q) - n_1n_2C_{12}^2(q)]},$$

$$S_{12}(q) = \frac{n_1n_2C_{12}(q)}{[1 - n_1C_{11}(q) - n_2C_{22}(q) + n_1n_2C_{11}(q)C_{22}(q) - n_1n_2C_{12}^2(q)]},$$

$$I0^3 = 0.10$$

 $\beta(Q) = \|\langle F(Q) \rangle\| \uparrow 2 / \langle \|F(Q)\| \uparrow 2 \rangle = \|\langle F(Q) \rangle\| \uparrow 2 / P(Q)$

 $I(Q) = nP(Q)[1 + \beta(Q)(S(Q) - 1)]$

 $\beta(Q)$ can be caused by both the asphericity and polydispersity. This method can also be applied to the case of a small polydispersity $(|\beta(Q) - 1| < 0.1).$ Ann. Rev. Phys. Chem. 1986. 37: 351–99 Copyright © 1986 by Annual Reviews Inc. All rights reserved

SMALL ANGLE NEUTRON SCATTERING STUDIES OF THE STRUCTURE AND INTERACTION IN MICELLAR AND MICROEMULSION SYSTEMS

S. H. Chen

Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Example 5 – Ellipsoidal Micelle

Macromolecules 1998, 31, 2236-2244

Example 6 – Microemulsion

PHYSICAL REVIEW E, VOLUME 63, 021401

Clipped random wave analysis of anisometric lamellar microemulsions

Dawen Choy¹ and Sow-Hsin Chen^{2,*} ¹Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ²Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 28 May 2000; published 10 January 2001) 10³ 10² 10³ 10² 10³ 10⁴ 10² 10² 10⁴ 10² 10⁴ 10² 10⁴ 10² 10⁴ 10² 10⁴ 10⁴ 10² 10⁴

C12E4-D2O-octane

Example 7 – Carbon Nanotube

Macromolecules

SANS Investigation of Selectively Distributed Single-Walled Carbon Nanotubes in a Polymeric Lamellar Phase

Changwoo Doe,[†] Hyung-Sik Jang,[†] Steven R. Kline,[‡] and Sung-Min Choi^{*,†}

[†]Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea, and [‡]NIST Center for Neutron Research, Gaithersburg, Maryland 20899-6102

Received February 11, 2010; Revised Manuscript Received May 3, 2010

Example 8 – Micellization Kinetics

1000

Derive New Scattering Functions

 $P(Q) = \langle |F(Q)| \uparrow 2 \rangle = \langle |\int V \uparrow @ 4\pi \rho(r) e \uparrow -iQ \cdot r \ d\uparrow 3 \ r \ |\uparrow 2 \rangle$

Li et al. J. Appl. Cryst. 44 545 (2011)

Selection on systems for **quantitative** analysis using scattering techniques:

1. Single component in a certain length/time scale

2. Monodisperse (β(Q) in S.-H. Chen, Ann. Rev. Phys. Chem. **1986** 37, 351-399.)

3. No aggregation (Aggregation does not dominate the scattering.)

4. Not too dilute, not too concentrated (1% < ϕ_v < 40%)

References

INTRODUCTION TO THE THEORY OF THERMAL NEUTRON SCATTERING G.L. Squires PERGAMON MATERIALS SERIES SERIES EDITOR: R.W. CAHN UNDERNEATH THE BRAGG PEAKS Structural Analysis of **Complex Materials** T. EGAMI and S.J.L. BILLINGE

Pergamon