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Line defects on the surface of rutile TiO2ð110Þ form in pairs sepa-
rated by 1.2 nm creating a quantum well. The well is effectively
closed by the presence of two charged structures at both ends
separated by a distance in the 10–20 nm range. As expected for
quantum confinement a long period oscillatory feature of the local
density of states is observed and attributed to the formation of
discrete quantum states inside the system. It is at first glance sur-
prising that the lowest energy quantum state of the well can be
observed at room temperature. The properties of the quantum
state cannot be explained in an independent-electron, band-like
theory. Instead, electron-electron correlation must be included to
give a satisfactory picture of the spatial distribution of the charge
density. Theory predicts charging energies of 1.30 eV and 1.14 eV
for quantumwell lengths of 14 nm and 16 nm, respectively, in good
agreement with a classical calculation and the size dependence of
the capacitance. This observation opens up the possibility of
experimentally imaging the transition from a Coulomb blockade
localized in a zero-dimensional system to an independent-particle
or band-like behavior in an extended one-dimensional system.
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One of the most striking features of quantum mechanics is the
distinctive electronic behavior associated with each level of

dimensionality. Advances in scanning probe techniques coupled
with the ability to prepare low-dimensional systems of unprece-
dented quality permits the direct observation of a number of
manifestations of quantum mechanics in dimensionally confined
systems (1). For example, a recent study revealed the presence of
one-dimensional electronic states in the region between self-
organized metallic nanowires on a semiconducting surface (2), a
textbook illustration of an electron in a one-dimensional box. The
famous picture of electron waves in a quantum corral is another
beautiful example of imaging the density distribution of electrons
in quantum confining structures (3–5). The electronic behavior of
such systems may often be successfully understood within the
independent-electron picture. When dimensionality is further re-
duced from quasi one-dimension (Q1D) to quasi zero-dimension
(Q0D), electron-electron correlations are increasingly important
and, in some instances, even dominate. In that case, the single-
electron picture breaks down. The failure of the single-electron
description is exemplified by Coulomb blockade behavior (6, 7).
Here, the presence of a net charge in the structure and the asso-
ciated Coulomb repulsive potential hinder the addition of an
extra electron. A convenient way to understand this behavior
is through the concept of charging energy, similar to the energy
stored on the plates of a conventional capacitor. For a typical
spherical quantum well with tens of nanometer radius, the
equivalent capacitance is on the order of the 10−17 F, which cor-
responds to a charging energy of the order of 10 meV. At suffi-
ciently low temperatures, this energy is not readily available.
Consequently, an electron cannot overcome the electrostatic
barrier due to net charge present in the system.

Previously studied systems, such as the Q0D quantum corrals
(3, 4) or the Q1D confinement by parallel platinum (Pt) nano-
wires on semiconductors (2), were associated with a significant
amount of charge leakage, either because they were formed
on metallic surfaces or because of the extended nature of the
Q1D confinement. This electron leakage makes the concept of
charging energy difficult to apply due to the screening of the
Coulombic potential by bulk charges, thus preventing any com-
parison with the electron-electron repulsion energy in the differ-
ent dimensional systems. But consider a system which exhibits
strong confinement in two dimensions and weaker and variable
confinement in the remaining dimension. The system could be
tuned from the one-dimensional subband electronic structure
of a Q1D system to the discrete-state electronic structure of
Q0D system.

Coulomb blockade behavior at room temperature has been
previously reported by Postma and coworkers in 2001 (8). Using
an atomic force microscope, they measured charging energy of
about 120 meV in a box made up of two local barriers into
the single-wall carbon nanotube. Here we report on unique
self-assembled nanostructures realized on TiO2ð110Þ, with esti-
mated charging energies of more than 1 eV, about 10 times larger
than that reported by Postma et al.. This large Coulomb charging
energy is the result of the smaller size of the nanostructures
shown here.

Results
Fig. 1A shows a system composed of two line defects (9) about
10 nm long and spaced 1.2 nm apart along the [11̄0] direction.
They are terminated with charged nanoclusters of TiO2 forming
what we call nanoclips. Inside of this Q0D structure is a periodic
distortion with a period ∼10 times the lattice spacing (Fig. 1B).
This electronic wave is confined in the plane by the nanoclip
and by the image potential and bulk band gap perpendicular
to the surface (10, 11). The wave pattern is very reminiscent
of the confined electron waves in the quantum corral (3, 4) or
the one-dimensional wire (2, 5). However, we will show that this
is not the correct picture, and strong electron-electron interaction
is required to explain the experimental observations. This work
opens up the possibility of preparing nanoclips with longer
lengths thereby allowing the visualization of the transition from
localized to band-like electronic structure.

The insert of Fig. 2A shows scanning tunneling microscope
(STM) images of structures with three different lengths. The
short one, n ¼ 0 of length 6 nm, has no charge oscillation.
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The n ¼ 1 structure is 16.5 nm long and shows one maximum and
the n ¼ 2 nanoclip is 17.5 nm long and exhibits two maxima.

The atomic structure of the single line defect has been fully
determined using a combination of STM and density functional
theory (9) and recently confirmed by transmission electron micro-

scopy imaging (12). In each line defect, titanium (Ti) interstitials
form the edge/face-sharing octahedra that serve as building
blocks for (1 × 1) as well as (1 × 2) surface reconstructions on
TiO2 (110). In addition, the line defects are often terminated with
bright spots at the ends. The height of an end feature is typically
about twice that of the line defect, i.e., 3.2 Å above the 5-coor-
dinated Ti (also referred to as “Ti4þ”) row of the substrate.
Furthermore, an end feature spans across both Ti4þ and bridging
O (Obr) rows along (1–10). With the width along [11̄0] compar-
able to that along [001], the resulting shape is either oval or
circular. These topographically distinctive dots have been inter-
preted as clusters of stoichiometric TiO2. Detailed discussions on
their structures and their roles in cluster nucleation and growth
were presented elsewhere (13).

For the nanoclip in Fig. 2, the atomic structure of each sidewall
is constructed using substoichiometric TiOx (x < 2, in this case
x ¼ 1) units of edge/face-sharing octahedra. Each sidewall is con-
nected to an end feature, made of two TiO2 units in the repeating
unit cell Fig. 2B. One TiO2 unit has its molecular plane oriented
horizontally to the surface above the 2-coordinate Obr while the
other unit oriented vertically above the row of Ti4þ (highlighted
with dotted oval). These two TiO2 molecular units for an end
feature represent the building blocks for stoichiometric surface
regeneration via corner-sharing octahedra, as compared to the
substoichiometric surface reconstruction by line defects. Previous
experiments on surface dynamics showed that these dots played
an active role as itinerant species in the restoration of oxygen-de-
ficient TiO2 (14–17). Upon exposure to oxygen, bright dots were
observed to nucleate on terraces and subsequently converted into
new terraces with line defects for layer-by-layer growth.

Typical STM images of the structures described above are
shown in Fig. 2A. The manifestations of confinement are differ-
ent in several notable ways compared to previously reported con-
finement in quantum corrals (3, 4). First the size of the confining
box is approximately an order of magnitude smaller with a surface
area of 1.2 × 20 nm2, and its shape is more elongated than the
typical oval corrals. Second, in addition to the long period
modulation, the observed patterns also exhibit the intensity oscil-
lation of a much shorter period corresponding to the 0.295 nm
periodicity of the surface lattice along the [001] direction. Third,
the substrate used here is essentially insulating with a large band
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Fig. 1. (A) Constant-current, three-dimensional STM image of a 10 nm long
“nanoclip” nanostructure on TiO2 (110) substrate. A 3.8 nm period oscillation
is observed, as shown on the line profile between the two ends of the linear
nanoclip reproduced on (B).
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Fig. 2. (A) Constant current STM image for a large area scan (85 × 85 nm2, 0.5 nA) exhibiting a number of double-line-defects (nanoclips), which show the ob-
servable charge oscillation inside. The insert figures focus on three different types of nanoclips:without chargeoscillation (n ¼ 0),withonemaximum (n ¼ 1) and
with twomaximaofoscillation (n ¼ 2), respectively; (B) Ball-and-stick structuralmodelofa typical“nanoclip”viewedfromthetopandthe sideatanangle (Ti: light
blue (“nanoclip”), dark blue (surface); O: red). The end structure of the “nanoclip” is highlighted with yellow oval regions in the top and side views.
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gap and corresponds to a large barrier. Fourth, the voltage and
the temperature at which the images are recorded are signifi-
cantly larger than the ones used to observe quantum corral states.

Model
We present here a simple model to compute the STM profiles in
the Tersoff-Hamann model for the tunneling probability (18). In
the adopted approach, the measured profiles are obtained from
the product of the standing wave profiles with the local density of
states (LDOS) of the perfect surface along the [001] direction
(here perfect means without the end defects). First, we have
to compute this defect free LDOS. For this LDOS, we model
the system as a one-dimensional box with a background potential
which has the T ¼ 0.295 nm periodicity of the underlying surface
without additional defects. Since the ratio of the amplitudes of
short and long period oscillations is observed to be about 1∶7,
it follows that the defect free LDOS must vary slightly in space
with a relative variation of 1∶7. To design such a one-dimensional
periodic background potential energy (V per), we assume the
LDOS spatial variation to be dominated by the spatial depen-
dence of the Bloch wave at the same energy. The electrons
are assumed to be confined in the perpendicular direction by
the image potential and the bulk band gap, in such as way that
only the first energy level corresponding to the well in that direc-
tion is involved in the model. In the framework of a perturbative
approach, the Fourier coefficients of this Bloch wave (cg) are pro-
portional to the Fourier coefficients of the potential energy (vg):
cg∕c0 ¼ −2mvg∕ℏ2G2. With a sinusoidal shaped Bloch wave, the
1∶7 ratio is obtained for v1 ¼ −0.31 eV. So, we may choose a
sinusoidal potential energy, V per ¼ A cosð2πx∕TÞ, with an ampli-
tude A ¼ −0.62 eV. The band-structure produced by this poten-
tial is nearly indistinguishable from that of a free electron with the
effective mass of 1.04 times the free-electron mass, except near
the band-edge. The 4% difference in effective mass is enough to
cause the slight 0.295 nm period oscillation of the defect free
LDOS, which would be otherwise strictly constant for a free elec-
tron. The local density of states D0ðrÞ is then given by:

D0ðE;xÞ ¼
−1
π

ImG0ðE;x;x0Þ;

where G0 is the Green function of the one-dimensional crystal
without defects, expressed by

G0ðE;x;x0Þ ¼ ∑
n;k

ψn·kðxÞψ�
n·kðx0Þ

Eþ iε − EnðkÞ
;

where the ψn;k are the solutions of the Schrödinger equation with
the potential V per. Now, we can compute the LDOS for the con-
fined system by adding an explicit potential energy term V el due
to the presence of the charged end defects. In Hartree units

V elðxÞ ¼
δq1

L∕2þ x
þ δq2
L∕2 − x

;

where the end defects are separated by a distance L in units of the
Bohr radius and carry an effective charge εr δq1 and εr δq2 in units
of the fundamental charge. This charge is related to the presence
of stoichiometric and reduced TiO2 clusters at the end of the line
defects (13). In this form, δq1;2 implicitly include depolarization
effects related to the dielectric constant of inside the nanoclip.
The local density of states is computed from the modified Green
function of the system using a Dyson equation for adding V el to
the one-dimensional Schrödinger equation. The result is the
appearance of discrete energy levels. The first energy levels
are close to the harmonic oscillator energies which, in Hartree
units, are:

En ¼ Eb þ Emin þ
�
nþ 1

2

�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δq1 þ δq2
L3m�∕me

s
;

where Eb is the reference energy (the bottom of the band) taken
equal to the chemical potential of the bulk, Emin is the minimum
value of V el,m� is the effective mass of the electrons, and L is the
length of the box. The LDOS in the energy range of the first two
modes reproduce the spatial characteristics of the observed STM
intensity modulation shown in Figs. 1 and 2A.

While the above independent-electron model qualitatively
describes the formation of the standing wave pattern in the na-
noclip, there is a major qualitative discrepancy between the model
and the experiment. The typical length of the box is about 20 nm
and for such a size, the first few energy levels fall inside the ther-
mal energy window available at the temperature at which the os-
cillations are observed. This means that the experiment should
see a mixture of the first states, all with different wavelengths.
Consequently, this mixing would wash out the oscillations making
them impossible to see. Moreover, the oscillating features have
been experimentally proven to be astonishingly robust against the
tip bias increasing by up to 0.5 eV. Clearly there is something
fundamentally missing in the simple electron-in-a-box picture.

In contrast to the reported electron oscillation in a quantum
corral on copper, the substrate used in the present study is an
insulating material, and there is little or no electronic screening
from the bulk material. Also, the electrons are trapped in the box
for a long time since there are only a few available surface states
through which the confined electrons could leak or escape. The
absence of screening and the weakness of the leakage give rise to
a charging effect that is due to the presence of electrons that have
been injected from the tip. The charging effect makes it much
harder to add additional electrons in such a confined space. With
the typical dimension of the boxes observed here, we estimate the
capacitance of the system to about 10−19 F or an equivalent
charging energy of about 1.5 eV. The large charging energy
can significantly shift and separate the energy levels that are
the eigenvalues of the Schrödinger equation. In order to take this
effect into account, we have added a self-consistent energy term
to our model by including an effective potential obtained by
solving the Poisson equation for the electronic density. Since
the states and the potential have a mutual dependence, we need
to solve a self-consistent problem in order to go beyond the in-
dependent-electron picture presented above. Taking electron-
electron interaction into account, the one-dimensional Hamilto-
nian of the system is H ¼ T þ V per þ V el þ V sc, where V el is the
confining potential energy defined above and V sc is the self-
consistent potential energy due to the existing electron density
ρðxÞ. The latter is obtained from Poisson’s equation:

ΔV scðxÞ ¼
−eρðxÞ
ε0

;

and T is the kinetic energy operator. The one-dimensional elec-
tron density is evaluated from

ρðxÞ ¼ 2e∑
n

jϕnðxÞj2;

where ϕnðxÞ’s are the solutions of the Schrödinger equation.
The summation is performed on the energy levels up to the
tip energy. These levels verify

En − Eb þ ΔEn þ El ≤ jejV;

where V is the bias potential and ΔEn’s are the contributions of
the self-consistent potential to the energy levels. Because the
Hamiltonian can be considered in a separable form, the wave
function can be expressed as a factor of three functions, corre-
sponding to each direction. It follows that the energy is a sum
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of three terms, one for each direction. Here z is normal to the
surface and y is normal to the strand defect. For each eigen-en-
ergy En of the one-dimensional quantum well, there is an infinite
number of possible energies E corresponding to the y-dependent
wave function solution to the Shrodinger equation, E ¼ Enþ
ℏ2

2m� k2y . Because the wave function is confined in the y direction
between the two TiO line defects with a separation Dy ¼ 1.2 nm,
ky can take on the values lπ∕Dy where l is a positive integer. So the
kinetic energy in the y direction is

El ¼
ℏ2

2m� π
2l2∕D2

y :

This method is applied for the analysis of the experimental
charge density profiles. The only input to the model is the end
charges (δq1 and δq2) and the length of the box (L) as shown
on Fig. 3A. Two examples using the approach described above
are included in Fig. 3B. The parameters used for these plots
where: L ¼ 14 nm, δq1 ¼ 1.22 e, δq2 ¼ 0.78 e, μ ¼ 1.8 eV and
L ¼ 16 nm, δq1 ¼ 0.53 e, δq2 ¼ 1.9 e, and μ ¼ 1.8 eV, respec-
tively. Ten other examples of this type of fit are reproduced in
the SI Appendix. The theoretical line profiles fit closely with
the experimental results. It is remarkable that even though the
model described here remains relatively simple and elementary,

it accounts for all the salient features observed in the experi-
ments: position, number, and relative intensity of the peaks,
and most importantly their robustness with respect to thermal
agitation and change in bias potentials. Recently, Ronnow et al.
reported the charge carriers confined to metallic bilayers in
La2−2xSr1þ2xMn2O7 due to polaron and attributed the STS gap
as the energy necessary to dissociate the quasiparticle to extract
the electron (hole) from the MnO layer to the tip (19). However
in the present study, the observed correlation between the charge
density oscillation and the length of the Q1D “box” points to the
interference pattern resulting from the Bloch wave functions
confined in the box rather than the locally trapped polarons.

We conclude the analysis of the experimental results by a dis-
cussion of the number of electrons present in the box. The num-
ber of electrons we obtained by our theoretical analysis is not an
integer value. In our system, the quantum well communicates
with the bulk and the surface. So, the electronic wave function
is not entirely localized inside the well. It follows that the inte-
gration of the probability density over the quantum well does
not yield an integer number. Actually, the charge confinement
in this experiment is fundamentally a dynamic process. The elec-
trons come from the tip to the well where they stay a sufficiently
long time to produce a charging effect. After that, the electrons
tunnel to the bulk or surface states. This tunneling allows a flow
of electrons from the tip; otherwise, the STM current would be
zero. In our model, for sake of simplicity, we treat the quantum
well as an isolated system. We mimic the dynamic behavior by
using a noninteger number for the occupation of each level.

Conclusion

We have reported and explained a unique type of “quantum
well” grown on an insulating TiO2ð110Þ surface. The well is
effectively closed by the presence of two charged structures at
both ends, and they are responsible for a long-range potential
that governs the behavior of the electrons inside the well. As
expected from a system with quantum confinement, we observe
oscillatory features and attribute them to discrete quantum states.
The spatial distribution of the charge density fits well with the
solution of the Schrödinger equation, provided that correlation
effects are included. However, the astounding result is that the
charge density distributions are all observed at room temperature
and furthermore unchanged within the range of STM tip poten-
tial (about 0.5 V variation). Because the substrate is insulating
and the electrons are well confined inside the confining structure,
the charging-energy-of-a-capacitor model is used to evaluate the
corresponding charging energy. Here we find that the system has
a very small capacitance of 10−19 F corresponding to a charging
energy of about 1.5 eV, which is responsible for the robustness of
the discrete states with respect to temperature and tip potential.
Remarkably, our theoretical analysis indicates that the energy
needed to add an extra electron in the two examples shown in
Fig. 2 B, C amounts to 1.30 eV and 1.14 eV for box lengths of
14 nm and 16 nm, respectively. Assuming the capacitance C is
proportional to the length of the box and as the charging energy
is inversely proportional to the capacitance, these numbers are in
excellent agreement with a simple classical picture of capacitor
charging, verifying that ECðL1Þ∕ECðL2Þ ¼ L2∕L1, independent
of the detailed analytical form of the capacitance.

Methods
The experiment was carried out using a variable temperature STM in an
ultrahigh vacuum chamber (base pressure < 10−10 Torr). A rutile TiO2ð110Þ
sample was cleaned by several cycles of Ar-ion sputtering with the ion current
density of about 0.65 μA∕cm2 at the sample for 15–20 min followed by an-
nealing it up to 650 °C for 15 min. A constant current topographic mode was
employed for imaging. Sample biases were usually chosen between þ1.0 and
þ2.2 V. All STM images presented here were obtained at room temperature.
The surface exhibits a number of linear structures, which look like paperclips,

Fig. 3. (A) The nanoclip nanostructure can be modeled as a one-dimensional
box of length L closed at its ends by two charged structures compatible with
the atomistic model shown on Fig. 2B. (B) Example of how the model, which
included electron-electron correlation, can be used to fit the observed (blue)
oscillations in the nanoclip. The red curves correspond to the computed
charge densities. The calculations indicate that the two examples shown here
have a charging energy of 1.3 and 1.14 eV, respectively. (Parameters used:
L ¼ 14 nm, δq2 ¼ 0.78 e and L ¼ 16 nm, δq2 ¼ 1.9 e, respectively).
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dispersed on (1 × 1) terraces Fig. 2A. Additional data are presented in the
SI Appendix.
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